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Abstract

Nanoscale size and fiber like structure of carbon nanotubes (CNTs) may determine high reactivity 

and penetration, as well as the pathogenicity of asbestos and other mineral fibers. Despite many in 

vitro and in vivo studies, the absence of full-scale data on CNT effects on human health clearly 

point out the necessity for epidemiological studies. Currently, several projects are initiated 

worldwide on studying health risks associated with the inhalation of industrial CNTs, including 

NIOSH-promoted research (United States), the European CANTES study, and the Russian CNT-

ERA project. Studies comprising several successive steps, such as CNT exposure assessment in 

occupational settings, toxicological evaluation, and epidemiological observations, are critical for 

determining material safety and use criteria.

INTRODUCTION

According to the EU definition of 2011 [1], carbon nanotubes (CNTs) are classified as 

nanomaterials. At the same time, based on the morphological parameters (length and aspect 

ratio), CNTs behave as fibers [73]. This dual nature of carbon nanotubes may determine 

their high reactivity and penetration [61], as well as the pathogenicity similar to asbestos and 

other mineral fibers [30]. CNT production is growing every year [4] due to their application 

in construction [97], machine engineering [17], electronics [15], power industry [19], space 

engineering [5], and biomedicine [75, 93]. Therefore, both specialists and consumers 

question the safety of CNT, as well as technological processes associated with CNT 

production and application. It would be rather unwise to assume that the innovative branch 

of nanoindustry is environmentally friendly. Failure to take action may slow down 

development and lead to financial losses of industrial enterprises. In particular, getting such 

products to the market without safety guarantees may damage the reputation and public 

image of a company, as well as cut off access to new markets. In addition, these innovative 

enterprises require assistance in solving such problems as registering new chemicals, 

product certification, the organization of a labor-protection system, and medical supervision 

over the personnel. Ways to obtain objective data on potential biomedical and ecological 
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risks, as well as working out approaches to increase the efficiency of risk management, are 

very important for the sustainable development of this industrial branch [9].

EARLY HYPOTHESES AND FIRST EVIDENCE OF CNT TOXICITY

The toxic effects of CNTs have been studied since the early 2000s, when they were 

produced only in laboratories and during experimental manufacturing. Toxicological 

experiments were aimed at detecting susceptible organs and systems. Inhalation and dermal 

penetration were viewed as the main pathways CNTs could enter the human body [23, 55]. 

The design of experiments was based on such hypotheses of the interaction between 

nanoparticles and biological objects as oxidative stress and mechanical damage to cell 

structures. The first in vivo studies were performed on the toxicity of single-walled carbon 

nanotubes (SWCNTs) [44, 47, 50, 84, 91, 94]; but in a few years the focus shifted to 

multiwalled CNTs (MWCNTs) [32, 49, 57, 70, 88], because the latter were more 

commercially attractive.

In the experiment on mice [44], SWCNTs, carbon black (negative control), and quartz 

(positive control) were compared. In mice intratracheally instilled with 0.1–0.5 mg of 

nanotubes, the number of granulomas in the lungs was greater, and the inflammatory 

response was significantly stronger than those treated with quartz and carbon black. In [94], 

the pilot investigation was aimed at comparing the pulmonary effects produced by 

SWCNTs, quartz particles, and carbonyl iron particles in rats intratracheally instilled with 

1–5 mg/kg of the corresponding substance. Exposures to SWCNTs produced transient 

inflammation and tissue damage, as well as non-dose-dependent series of nonprogressive 

multifocal granulomas. The researchers came to the conclusion that these granulomas were 

evidence of a foreigh-object body reaction. In the aspiration experiment [84] (pharyngeal 

aspiration as a model of inhalation) on mice treated with SWCNTs at doses of 10, 20, 30, 

and 40 μg/mouse, a dose-dependent inflammation and fibrosis accompanied with alveolar 

wall thickening was found. At the same time, the materials taken for comparison (nanosized 

carbon black and silicon dioxide) did not cause alveolar wall thickening or granulomas. The 

inflammatory response was significantly weaker than at the same exposure doses. When 

comparing SWCNTs, carbon black, and vanadium oxide (pharyngeal aspiration, 2 mg/kg), it 

was found [47] that SWCNTs caused interstitial fibrosis, a significant increase in mRNA 

expression responsible for the platelet-derived growth factor, and the formation of carbon 

structures that bridge alveolar macrophages in situ. It could depend, according to 

researchers, results from the unique morphology of nanotubes and/or the presence of 

residues of metal catalysts. The bridges between macrophages were regarded as biomarkers 

of exposure. The important role of dispersion degree during exposure was shown in [50]. 

Researchers revealed that exposure to highly dispersed SWCNTs (pharyngeal aspiration, 10 

μg/mouse) caused only interstitial fibrosis, whereas material with a low dispersion degree 

was characterized by fibrosis and granulomas.

In 2008, Takagi et al. [88] suggested using peritoneum as a pleura model. p53 +/− 

heterozygous mice (with a genetically inherited high risk of tumors) were administered 

intraperitoneally with 3 mg of MWCNTs or asbestos (crocidolite). In both cases, 

mesothelioma was induced, but the experiment was criticized by the scientific community 
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because the dose was too high [24]. In the same year, Poland et al. [68] performed a similar 

comparative study of MWCNTs, asbestos, and ultrafine carbon black. The particles were 

injected into mice intraperitoneally at a dose of 50 μg (as opposed to 3 mg in [88]). Both 

asbestos and MWCNTs caused significant protein exudation and the formation of 

granulomas with cell aggregates. The researchers concluded that asbestos-like pathogenicity, 

which is assigned to CNTs, is achieved by the mechanism of the structure-activity 

relationship peculiar to asbestos and other fibrogenic fibers. In later experiments, the CNT 

translocation of the respiratory tract into the interstitium, subpleural space, and pleura was 

demonstrated [50, 70, 74]. Another feature of CNTs was their high biopersistence, i.e., a 

long period of stay in the pulmonary system as a result of inhalation or aspiration [13].

In vivo experiments on evaluating dermal toxicity have not been performed. However, the in 

vitro experiments of Monteiro–Riviere et al., revealed that MWNTs can penetrate into 

keratinocytes and stimulate an immune response, in particular IL-8 extraction [55, 83], as 

well as the high activity of free-radical oxidation and structural changes in keratinocytes 

(HaCaT culture) exposed to SWCNTs, which suggested the presence of dermal toxicity in 

the studied nanotubes.

The in vitro experiments were aimed at establishing the damaging effects of nanoparticles. 

In the first place, researchers were interested in oxidative stress and associated cyto- and 

genotoxic effects, the mechanical effect of nanotubes on cellular structures, and specific and 

nonspecific interactions with the receptors. Srivastava et al. 2010 [86] found oxidative stress 

and apoptosis in A549 cells (alveolar epithelium) exposed to MWCNTs, and the production 

of reactive oxygen species occurred, as was suggested by the researchers, via the 

cytochrome P450 system. Previously [78] the same mechanism of oxidative stress was 

shown in the cell culture of alveolar epithelium in response to SWCNTs. When studying the 

genotoxic effects of exposure to CNTs on RAW of 264.7 macrophages, the researchers 

detected some signs of damage to the genetic apparatus of cells at concentrations above 0.1 

mg/mL for SWNTs and above 1 mg/mL for MWCNTs, although the cytotoxic effects 

appeared only at the highest doses (100 mg/mL) [53]. The toxicogenomic comparison of 

asbestos and MWCNTs in the experiment on human bronchial epithelial cells revealed 

changes in the expression of 12 common genes associated with mesothelioma and 22 

common genes associated with lung cancer [42]. In studies [36, 37, 71, 80] it was found that 

MWNTs may associate with the cell membrane, including bronchial epithelial and 

macrophages, and disrupt its integrity, inducing the development of proinflammatory 

cytokines and cell death.

Therefore, oxidative stress and cytotoxic effects of CNTs have been shown for keratinocytes 

(see above), epithelial cells, and macrophages [17, 34, 36, 37, 71, 78, 80, 86]. Genotoxic 

effects and tumor induction were also observed [29, 41, 53, 76]. CNT interaction with 

specific receptors at the surface of cell membranes and/or organelles has not been identified, 

which may be due to the lack of any recognizable domains in nanotubes. It is most likely 

that there is no common toxic effect of CNTs, which would explain all of the observed 

effects. Further research is needed, including the application of modern cell and molecular 

techniques.
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During this period, the first hygienic assessments of exposure to CNTs in the workplace 

were performed simultaneously with the toxicological experiments. They were based on 

indirect methods for determining impurities (catalysts such as nickel or cobalt) in the 

working area [14, 40, 48]. The results of measurements in conjunction with the data on 

electron microscopy of the samples demonstrated that the staff can contact CNTs.

It is noteworthy that the general restrictions for the initial phase of research were high 

exposure doses calculated for the easily registered biological response, the use of laboratory 

purified and/or modified samples rather than industrial CNTs, the poor relation of the 

exposure model in in vivo and in vitro experiments with real working conditions, and a lack 

of data on the actual exposure in the environment.

EVALUATION OF CNT TOXICITY IN THE CURRENT PERIOD

The later period of studies on CNT toxicity is characterized by some innovations. Complex 

inhalational units for CNT aerosolization with constant control over the number and size of 

individual particles were developed. Thus, it became possible to lauch chronic experiments 

for 1 year or more using low doses during the inhalation [51, 85] and confirm the specific 

profibrogenic effects of CNTs established during the acute and subacute experiments. In 

addition, the researchers began to pay more attention to extrapulmonary effects: systemic 

affection of the vascular bed [25], effects on the central nervous system [39], reproductive 

toxicity [3], and changes in the immune status [54]. It was proven that CNTs can induce 

neoplastic processes [28, 77, 82] and an allergic response [38, 64, 66]. In November 2014, 

the International Agency for Research on Cancer (IARC) classified MWCNT-7 (produced 

by the Mitsui ltd., Japan) as Group 2B: possibly carcinogenic to humans [31].

Significant changes took place in the hygienic evaluation of CNTs. The indirect methods for 

determining the content of CNTs in the environment (based on catalyst residues) were 

replaced by the direct calculation of elemental inorganic carbon, a component of carbon 

nanotubes [18, 52].

Toxicological experiments and the development of hygienic methods of research in the 

nanoindustry ensured the transition to the stage of epidemiological studies.

Currently, data on the effect of CNTs on the health of exposed individuals are insufficient, 

but there are several documented cases of CNT detection in the body of people affected due 

to a variety of reasons.

In particular, after the tragedy of 2001 in New York, a large number of rescue workers and 

persons providing assistance with debris removal and victim extrication had their pulmonary 

system affected by combustion products of building materials, fuel, and other substances 

[96]. High combustion temperatures contributed to the formation of tubular carbon 

nanostructures that were very similar to artificial CNTs. Subsequently, 12 891 people were 

examined during the screening program. Many of them had symptoms of respiratory lesions. 

In seven of the most severe cases, lifetime lung biopsy was performed. Four patients had 

CNTs, along with other dust particles in their bioptates, which were similar to carbon 
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nanostructures found in dust samples at the crash site; they had such pathological changes 

such as cellular fibrosis, chronic bronchiolitis, and granulomas [35].

German researchers described a case of toner nanoparticles found in the peritoneum when 

screening the peritoneal cavity of a female office worker with complaints about persistant 

abdominal pain [90].

The studies of suspended particles in the air are of particular interest. During a long-term 

epidemiological cohort study performed in the 1990s on the basis of six cities in the United 

States, it has been shown that mortality from all causes, as well as cardiovascular and 

cardiorespiratory mortality, was significantly dependent on the content of dust in the air of 

cities [22]. More recent studies have confirmed the role of fine (PM2.5, PM5, PM10) [69] as 

well as ultrafine (less than 1 μm) atmospheric particles in mortality from cardiovascular and 

pulmonary disease [16, 87, 95]. The accumulated experience of studying the effects of 

suspended particles in air on human health proves the need for field studies, including an 

assessment of exposure and the study of human health affected by nanoparticles.

In Taiwan, the first epidemiological study in the nanoindustry was performed in 2009–2010. 

It was based on 13 companies that produce or use nanoparticles of various types, including 

nanosized metals and their compounds, carbon nanoparticles (fullerenes, CNTs, and 

nanosized carbon black), and organic nanosized structures (dendrimers, liposome, etc.) [45]. 

During the study, the markers of cardiovascular and respiratory systems lesions, 

neurological functions, and immune-system state were evaluated. The results showed a 

decrease in the total antioxidant protection, an increase in the content of cardiovascular 

markers (C-reactive protein, and VCAM protein), and changes in heart-rate variability and 

cognitive functions. In the cross-sectional part of the study, functional changes in the 

respiratory system were not revealed, but there were signs of a decline in the respiratory 

functions during the prospective observation. The study was restricted by the absence of 

workers’ subdivision according to specific types of nanoparticles.

Complex projects that combine a sequential assessment of CNT content in the environment, 

toxicological studies, and epidemiological observations are the most promising in terms of 

studying the effect of CNTs on health. Epidemiological studies involving the collection of 

biological samples in a relatively small population (for example, people working in 

enterprises that produce and apply CNTs) should be carefully prepared. First, it is necessary 

to determine potential outcomes and biological markers of exposure to nanoparticles. In this 

case, toxicological experiment most closely matching the real exposure scenario is preferred, 

including the application of the same nanoparticles which are found in the environment at 

doses corresponding to the actual concentration along with the same ways of penetration. 

However, organizing this type of research is associated with numerous challenges, including 

the need to establish multidisciplinary teams, the development of methodological 

approaches for the transition from the CNT concentration in the external environment to the 

doses accumulated in the body, the selection of biomarkers of exposure and effect, and the 

relatively small (as of today) group of exposed persons as well as the difficult access to 

objects of the nanoindustry.
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According to an international group of experts [72], the studies on toxicokinetics/

toxicodynamics and noncarcinogenic effects of inhaled CNTs during the synthesis, 

processing, use, and disposal of the material should be considered the most important. At 

present, several projects on studying health risks associated with the inhalation of industrial 

CNTs are implemented: NIOSH-promoted research (United States), the Dutch CANTES 

study, and the joint Russian–United States CNT-ERA project.

In 2013, the launch of a small-format (about 100 employees) cross-sectional study to 

identify the relationship between exposure to carbon nanotubes and nanofibers and early 

changes in the pulmonary and cardiovascular systems was reported in the United States [27]. 

Currently, exposure in the workplaces is assessed in various ways to determine the relevant 

criteria for determining the content of CNTs and carbon nanofibers (CNFs) in the working 

environment [18, 26].

The study will include employees of at least ten enterprises producing and using various 

CNTs and CNFs. It is expected that the samples of blood and induced sputum will be taken 

from people under study. The selection of biological markers and survey methods was based 

on in vivo and in vitro toxicity studies of CNTs and CNFs; data from research on the 

pathophysiology of the tumor, fibrotic and inflammatory processes; and the results of studies 

of the medical and biological effects of non-carbon nanoparticles in humans [33, 45].

In 2014, the staff of several scientific institutions in the Netherlands and Belgium launched a 

study on early biomarkers of individual exposure to CNTs with a simultaneous hygienic 

assessment of the content of nanoparticles in the workplace air (CANTES). During the 

study, the content of elemental carbon in the air of an enterprise producing CNTs was 

assessed. Samples of blood, urine, and nasal and buccal epithelial cells were taken from the 

staff of the enterprise to assess a number of biochemical parameters and cytokine status. The 

results of the study have not yet been published in the form of articles, but the researchers 

reported increased levels of proinflammatory cytokines in the study group compared to the 

controls [92].

PROTOCOL OF THE RUSSIAN (CNT-ERA) STUDY ON CARBON NANOTUBES EXPOSURE 
AND RISK ASSESSMENT

Our study, which was started in 2011, includes hygienic, toxicological, and epidemiological 

stages.

At the initial stage of the study, we selected enterprises using the same type of reactors for 

the production of MWCNTs and performed a hygienic evaluation of the working places 

while determining the actual 8-hour TWA concentrations. Air sampling in the filters was 

carried out in the areas of contact with the aerosol MWCNTs followed by transmission 

electron microscopy to visualize nanotubes in the samples and determine the amount of 

elemental carbon by thermo-optical analysis.

Before planning the panel epidemiological study, a series of toxicological experiments [10, 

11, 12] was performed during which the promising biomarkers of the effect were 

determined. The biological effects of industrial CNTs were studied in mice, cell cultures of 
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macrophages, and cells of the bronchial epithelium. The exposure doses were selected based 

on the measured concentrations of MWCNTs in the air of the working environment, 

followed by the calculations of the deposited fraction in human lungs (according to the 

MPPD model [21]) and the accumulated deposited surface area doses (per 1 cm2 of the 

alveolar epithelium). The exposure doses were determined based on the accumulated 

deposited surface area doses, taking into account the surface area of the alveolar epithelium 

in mice. Promising markers of profibrotic changes were selected, such as TGF-b and 

osteopontin (osteopoetin), which were later included in the scheme of epidemiological study 

CNT-ERA. In addition, based on the interstitium affection identified during the in vivo 

experiments, the biomarker panel was supplemented by Krebs von den Lungen-6 (KL-6) 

factor, a mucinlike high molecular weight glycoprotein, marking various interstitial lung 

diseases in humans [43, 89].

In 2014, Erdeli et al. [26] presented the results of inhalation studies in mice in which the 

calculation of the exposure doses was also based on the concentration of MWCNTs 

measured in the air of a number of enterprises. However, in contrast to our study, the US 

group studied enterprises producing and applying different types of MWCNTs. Thus, it was 

decided that the toxicological experiment would be based not on MWCNTs provided by the 

enterprises participating in the study, but rather the purified commercial sample purchased 

from the company. In addition, the researchers did not set out a specific task for selecting 

biomarkers, thereby being restricted to comparing the effects of different doses in relation to 

nonspecific indicators of local (in the lung tissue) inflammation.

At the present moment, at the Russian enterprises participating in the study is carrying out a 

panel investigation with the sampling of blood, nasal lavage, and induced sputum from the 

workers and a control group for further evaluating the content of fibrosis markers and 

systemic vascular effects. During the panel study, the biological samples from the same 

person are taken repeatedly. The advantage of this approach is that each participant is their 

own control. In case of high-precision methods, such a panel study provides qualitative and 

quantitative assessments of health risks even for a small number of participants [65, 79].

The successful completion of panel studies will allow us to organize a smooth transition to 

large-scale epidemiological projects. At the same time, it is necessary to consider the 

possibility of an international consortium to develop a single protocol of prospective study 

with the standardization of approaches to sampling, assessing industrial exposures, the 

selection of biological samples, and functional study methods. Applying the methods used in 

genomics, proteomics, and lipidomics will make it possible to identify specific changes in 

animals and humans that are not masked by nonspecific reactions.

An important component of the system for studying the risk of exposure to carbon 

nanotubes is the development of banks with biological samples taken from the workers in 

the course of observation with the possibility of delayed analysis as new hypotheses will 

appear.
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MEETING THE CHALLENGES OF HYGIENIC STANDARDIZATION

In order to proceed to the assessment of risk in the workplaces and in the environment, we 

need data on acceptable levels of exposure to CNTs, but their development has been facing 

various difficulties, including the variety of CNT types, the complexity of their 

identification and quantitative evaluation in the environment, inadequate methodological 

approaches, and insufficient data on their biological effects.

One way to determine approximate safe exposure levels (ASELs) is to extrapolate the results 

of animal experiments based on the use of the lowest observed adverse effect levels with the 

application of risk-assessment methodology and establishment of the uncertainty factor. The 

first attempts to establish safe exposure levels (for MWNTs) were based on the results of 

subchronic inhalation experiments. The Nanocyl Company (Belgium), having assessed the 

risk and obtained an uncertainty factor of 40 based on the lowest observed adverse effect 

concentrations set out by Ma-Hock et al. [60] in the subchronic (90 days) inhalation 

experiments on rats [46], determined the no effect 8-hour weighted concentration for its 

MWCNTs (2.5 μg/m3). Aschberger et al. [13] suggested the ASEL of 1 μg/m3 for MWNTs 

taken by Ma-Hock [46], and 2 μg/m3 for the Baytubes (Bayer MaterialScience, Germany) 

used by Pauluhn et al. [67] in a 13-week experiment based on the uncertainty factors of 50 

and 25, respectively (obtained after the recalculation of the threshold levels of exposure and 

external respiration in rats and humans).

The Japanese National Institute of Advanced Industrial Science and Technology established 

the acceptable exposure level of 30 μg/m3 for all types of CNTs [58, 59]. The ratio was set 

for a period of 15 years as a result of the inhalation experiment with MWCNTs (Nikkiso 

Co., ltd) in rats performed by Morimoto et al. with both SWCNTs and MWCNTs [56].

In 2010, the National Institute for Occupational Safety and Health (NIOSH, United States), 

having performed a quantitative risk assessment on the basis of the previous in vivo studies 

[44, 46, 67, 70, 81], found that the mean CNT concentration during the working shift (0.2–2 

μg/m3) upon exposure during the working time is associated with a 10% risk of respiratory 

diseases. However, taking into consideration the inadequate techniques for the detection and 

calculation of CNTs in the samples, the suggested recommended exposure level (REL) was 

7 μg/m3 (calculated as elemental carbon determined using the method of thermo-optic 

analysis) [62]. In April 2013, a new report was published by NIOSH which established the 

recommended exposure level for all types of CNTs of 1 μg/m3. This was associated with an 

increase in the accuracy of procedures and, therefore, lower detection limits of CNTs in the 

samples [63].

In 2010, the Russian Federal Service for Supervision of Consumer Rights Protection and 

Human Welfare set out the ASELs for three nanomaterials, including SWNTs [2]. The 

drafters of the document were guided by the maximum allowable level of 0.01 fibers/m3, 

which was suggested by the British Standards Institution in 2007, calculated as 1/10 of the 

maximum allowable level for asbestos fibers. Simultaneously, in 2010, the Russian Federal 

Service for Supervision of Consumer Rights Protection and Human Welfare published 

several methodic recommendations on a quantitative determination of nanomaterials, 

including carbon nanotubes [6, 7]. According to these documents, it is suggested to detect, 
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identify, and calculate the number of CNT particles by transmission electron microscopy 

with contrasting by the salts of heavy metals. Infrared photoluminescence spectroscopy and 

infrared absorption spectroscopy can be used as additional methods of identification 

methods. It is suggested to take air samples using Krotov's apparatus with the deposition of 

aerosol particles in water. It should be noted that the opened Russian literature offers no data 

on the content of CNTs in air of the working place obtained using the methodology 

described above. Our results show that this approach does not allow an objective assessment 

of CNT content in the air, because it is extremely difficult to calculate individual nanotubes 

in the selected samples due to the rapid agglomeration of the particles.

Therefore, the recommended exposure levels for different CNTs in the world vary from 1 to 

50 μg/m3 (for 8-hour TWA concentrations). For comparison, the short-term exposure limit 

of carbon black in Russia is 4 mg/m3; the 8-hour TWA concentration of carbon composite 

materials is 1 mg/m3 [8]. Unfortunately, Russian experts have to rely on these values, for 

example, during toxicological evaluation of products.

CONCLUSIONS

1. In vivo and in vitro toxicological experiments allowed the presence of pronounced 

local profibrogenic effects produced by CNTs to be established on lung tissue. In 

addition, recent data suggest the potential possibility of extrapulmonary effects, 

such as systemic vascular changes and the affection of the immune status.

2. Under the conditions of insufficient data on the biomedical effects of CNTs, as well 

as the absence of reliable safety criteria for humans, it is urgent for assessing health 

risk to perform studies in exposed groups of people. Despite the small (at the 

current stage) number of exposed persons, a panel study with investigation of both 

local and systemic responses to CNT inhalation is the most favorable. Promising 

biomarkers are those of fibrosis and lesions of the cardiovascular system, as well as 

cytokines responsible for the development of inflammation and allergic reaction. 

This list will be enlarged with respect to in vivo and in vitro experiments. Thus, it 

is important to create a bank of biological samples (blood, urine, induced sputum, 

and buccal cells) to test new promising indicators.

3. Epidemiological studies should be carefully prepared. Complex projects combining 

a sequential assessment of CNT content in the environment, toxicological studies, 

and epidemiological observations are the most promising.
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